Selected Publications
January 2023
Systemic rifampicin shows accretion to locally implanted hydroxyapatite particles in a rat abdominal muscle pouch model
Journal of Bone and Joint Infection
Abstract. Introduction: biomaterials combined with antibiotics are routinely used for the management of bone infections. After eluting high concentrations of antibiotics during the first week, sub-inhibitory concentrations of antibiotics may lead to late repopulation of recalcitrant bacteria. Recent studies have shown that systemically given antibiotics like tetracycline and rifampicin (RIF) could seek and bind to locally implanted hydroxyapatite (HA). The aim of this in vivo study was to test if systemically administered rifampicin could replenish HA-based biomaterials with or without prior antibiotic loading to protect the material from late bacterial repopulation. Methods: in vivo accretion of systemically administered RIF to three different types of HA-based materials was tested. In group 1, nano (n)- and micro (m)-sized HA particles were used, while group 2 consisted of a calcium sulfate/hydroxyapatite (CaS/HA) biomaterial without preloaded antibiotics gentamycin (GEN) or vancomycin (VAN), and in group 3, the CaS/HA material contained GEN (CaS/HA+GEN) or VAN (CaS/HA+VAN). The above materials were implanted in an abdominal muscle pouch model in rats, and at 7 d post-surgery, the animals were assigned to a control group (i.e., no systemic antibiotic) and a test group (i.e., animals receiving one single intraperitoneal injection of RIF each day (4 mg per rat) for 3 consecutive days). Twenty-four hours after the third injection, the animals were sacrificed and the implanted pellets were retrieved and tested against Staphylococcus aureus ATCC 25923 in an agar diffusion assay. After overnight incubation, the zone of inhibition (ZOI) around the pellets were measured. Results: in the control group, 2/6 CaS/HA+GEN pellets had a ZOI, while all other harvested pellets had no ZOI. No pellets from animals in test group 1 had a ZOI. In test group 2, 10/10 CaS/HA pellets showed a ZOI. In test group 3, 5/6 CaS/HA+GEN and 4/6 CaS/HA+VAN pellets showed a ZOI. Conclusions: in this proof-of-concept study, we have shown that a locally implanted biphasic CaS/HA carrier after 1 week can be loaded by systemic RIF administration and exert an antibacterial effect. Further in vivo infection models are necessary to validate our findings.
December 2022
Longitudinal in vivo biodistribution of nano and micro sized hydroxyapatite particles implanted in a bone defect
Frontiers in Bioengineering and Biotechnology
Hydroxyapatite (HA) has been widely used as a bone substitute and more recently as a carrier for local delivery of bone targeted drugs. Majority of the approved HA based biomaterials and drug carriers comprise of micrometer sized particulate HA (mHA) or granules and can therefore only be used for extracellular drug release. This shortcoming could be overcome with the use of cell penetrating HA nanoparticles (nHA) but a major concern with the clinical use of nHA is the lack of data on its in vivo biodistribution after implantation. In this study, we aimed to study the in vivo biodistribution of locally implanted nHA in a clinically relevant tibial void in rats and compare it with mHA or a combination of mHA and nHA. To enable in vivo tracking, HA particles were first labelled with 14C-zoledronic acid (14C-ZA), known to have a high binding affinity to HA. The labelled particles were then implanted in the animals and the radioactivity in the proximal tibia and vital organs was detected at various time points (Day 1, 7 and 28) post-implantation using scintillation counting. The local distribution of the particles in the bone was studied with micro-CT. We found that majority (>99.9%) of the implanted HA particles, irrespective of the size, stayed locally at the implantation site even after 28 days and the findings were confirmed using micro-CT. Less than 0.1% radioactivity was observed in the kidney and the spleen at later time points of day 7 and 28. No pathological changes in any of the vital organs could be observed histologically. This is the first longitudinal in vivo HA biodistribution study showing that the local implantation of nHA particles in bone is safe and that nHA could potentially be used for localized drug delivery.
December 2022
Cement augmentation of pedicle screws is one of the most promising approaches to enhance the anchoring of screws in the osteoporotic spine. To date, there is no ideal cement for pedicle screw augmentation. The purpose of this study was to investigate whether an injectable, bioactive, and degradable calcium sulfate/hydroxyapatite (CaS/HA) cement could increase the maximum pull-out force of pedicle screws in osteoporotic vertebrae. Herein, 17 osteoporotic thoracic and lumbar vertebrae were obtained from a single fresh-frozen human cadaver and instrumented with fenestrated pedicle screws. The right screw in each vertebra was augmented with CaS/HA cement and the un-augmented left side served as a paired control. The cement distribution, interdigitation ability, and cement leakage were evaluated using radiographs. Furthermore, pull-out testing was used to evaluate the immediate mechanical effect of CaS/HA augmentation on the pedicle screws. The CaS/HA cement presented good distribution and interdigitation ability without leakage into the spinal canal. Augmentation significantly enhanced the maximum pull-out force of the pedicle screw in which the augmented side was 39.0% higher than the pedicle-screw-alone side. Therefore, the novel biodegradable biphasic CaS/HA cement could be a promising material for pedicle screw augmentation in the osteoporotic spine.
December 2022
Osteosarcoma is a malignant cancer of the bone mainly affecting adolescents. Despite progress, the clinical management of osteosarcoma is still challenging. With the current chemotherapy protocol being used for more than 30 years, the number of poor responders is increasing. Although new treatments have been explored since then, no improved tumor eradication effect have been found. In the present thesis, we have developed a new treatment method for osteosarcoma, using hydroxyapatite (HA) based materials as a platform for local delivery of cytostatics. Doxorubicin (DOX), a cornerstone osteosarcoma drug, was chosen as a drug candidate, due to its binding capacity to HA. Different types of HA-based biomaterials were tested for local or targeted delivery of DOX. The efficacy of the developed system was evaluated in-vitro, in osteosarcoma cells as well as in-vivo, in mice bearing an aggressive osteosarcoma.
In Study 1, a clinically approved calcium sulphate (CaS)/HA biomaterial achieved a sustained and controlled release of DOX up to 28 days, both in-vitro and in-vivo. Compared to no treatment or the clinical standard with systemic DOX administration, the local delivery of DOX using a CaS/HA biomaterial significantly hindered tumor progression by inhibiting angiogenesis and cell proliferation.
In Study 2, we investigated the physicochemical interactions between DOX and different sizes of HA particles, both in-vitro and in-vivo. When delivered by HA nanoparticles, DOX is routed to the mitochondria causing insufficient ATP synthesis, less cell migration and cell apoptosis. This leads to stronger in-vivo tumor eradication compared to systemic administration of DOX. Furthermore, nHA mediated delivery of DOX may prevent further metastases in- vivo, which was indirectly verified by PET/CT data.
In Study 3, HA particles (nHA, mHA or n/mHA) were labelled with carbon 14 (14C) to detect particle migration in- vivo. During the observational time of 28 days, the majority (>99.9%) of implanted HA particles, irrespective of the size, stayed in the implantation site (proximal tibia), without migrating to other vital organs. No pathological changes were detected in the vital organs.
In summary, we describe a new and efficient method to supplement osteosarcoma treatment, with a possible rapid translational potential, using clinically approved constituents. By using a hydroxyapatite-based biomaterial, DOX could be routed to the tumor site, more efficiently and with less side effects compared to systemic administration. The chemical interaction between DOX and HA lead to a sustained and controlled DOX release which further improved its tumor eradication effect. When using HA nanoparticles, DOX could be directed to the mitochondria causing tumor cell starvation, reduced migration and apoptosis, jointly leading to improved tumor eradication. The local administration of HA particles, irrespective of size, was confirmed as safe without damage to vital organs. In the future, chemotherapeutics with multi-release profile potentially could be applied by using a combination of nHA and mHA.
November 2022
Aim
There is a lack of biomaterial-based carriers for the local delivery of rifampicin (RIF), one of the cornerstone second defence antibiotics for bone infections. RIF is also known for causing rapid development of antibiotic resistance when given as monotherapy. This in vitro study evaluated a clinically used biphasic calcium sulphate/hydroxyapatite (CaS/HA) biomaterial as a carrier for dual delivery of RIF with vancomycin (VAN) or gentamicin (GEN).
Methods
The CaS/HA composites containing RIF/GEN/VAN, either alone or in combination, were first prepared and their injectability, setting time, and antibiotic elution profiles were assessed. Using a continuous disk diffusion assay, the antibacterial behaviour of the material was tested on both planktonic and biofilm-embedded forms of standard and clinical strains of Staphylococcus aureus for 28 days. Development of bacterial resistance to RIF was determined by exposing the biofilm-embedded bacteria continuously to released fractions of antibiotics from CaS/HA-antibiotic composites.
Results
Following the addition of RIF to CaS/HA-VAN/GEN, adequate injectability and setting of the CaS/HA composites were noted. Sustained release of RIF above the minimum inhibitory concentrations of S. aureus was observed until study endpoint (day 35). Only combinations of CaS/HA-VAN/GEN + RIF exhibited antibacterial and antibiofilm effects yielding no viable bacteria at study endpoint. The S. aureus strains developed resistance to RIF when biofilms were subjected to CaS/HA-RIF alone but not with CaS/HA-VAN/GEN + RIF.
Conclusion
Our in vitro results indicate that biphasic CaS/HA loaded with VAN or GEN could be used as a carrier for RIF for local delivery in clinically demanding bone infections.
June 2022
June 2022
Fracture behavior of a composite of bone and calcium sulfate/hydroxyapatite
Journal of the Mechanical Behavior of Biomedical Materials
June 2022
The Effectiveness of Metagenomic Next-Generation Sequencing in the Diagnosis of Prosthetic Joint Infection: A Systematic Review and Meta-Analysis
Frontiers in Cellular and Infection Microbiology
Background: A prosthetic joint infection (PJI) is a devastating complication following total joint arthroplasties with poor prognosis. Identifying an accurate and prompt diagnostic method is particularly important for PJI. Recently, the diagnostic value of metagenomic next-generation sequencing (mNGS) in detecting PJI has attracted much attention, while the evidence of its accuracy is quite limited. Thus, this study aimed to evaluate the accuracy of mNGS for the diagnosis of PJI.
Methods: We summarized published studies to identify the potential diagnostic value of mNGS for PJI patients by searching online databases using keywords such as “prosthetic joint infection”, “PJI”, and “metagenomic sequencing”. Ten of 380 studies with 955 patients in total were included. The included studies provided sufficient data for the completion of 2-by-2 tables. We calculated the sensitivity, specificity, and area under the SROC curve (AUC) to evaluate mNGS for PJI diagnosis.
Results: We found that the pooled diagnostic sensitivity and specificity of mNGS for PJI were 0.93 (95% CI, 0.83 to 0.97) and 0.95 (95% CI, 0.92 to 0.97), respectively. Positive and negative likelihood ratios were 18.3 (95% CI, 10.9 to 30.6) and 0.07 (95% CI, 0.03 to 0.18), respectively. The area under the curve was 0.96 (95% CI, 0.93 to 0.97).
Conclusion: Metagenomic next-generation sequencing displays high accuracy in the diagnosis of PJI, especially for culture-negative cases
March 2022
A New Augmentation Method for Improved Screw Fixation in Fragile Bone
Frontiers in Bioengineering and Biotechnology
Pertrochanteric fractures (TF) due to osteoporosis constitute nearly half of all proximal femur fractures. TFs are treated with a surgical approach and fracture fixation is achieved using metallic fixation devices. Poor quality cancellous bone in osteoporotic patients makes anchorage of a fixation device challenging, which can lead to failure of the fracture fixation. Methods to reinforce the bone-implant interface using bone cement (PMMA) and other calcium phosphate cements in TFs have been described earlier but a clear evidence on the advantage of using such biomaterials for augmentation is weak. Furthermore, there is no standardized technique for delivering these biomaterials at the bone-implant interface. In this study, we firstly describe a method to deliver a calcium sulphate/hydroxyapatite (CaS/HA) based biomaterial for the augmentation of a lag-screw commonly used for TF fixation. We then used an osteoporotic Sawbones model to study the consequence of CaS/HA augmentation on the immediate mechanical anchorage of the lag-screw to osteoporotic bone. Finally, as a proof-of-concept, the method of delivering the CaS/HA biomaterial at the bone-implant interface as well as spreading of the CaS/HA material at this interface was tested in patients undergoing treatment for TF as well as in donated femoral heads. The mechanical testing results indicated that the CaS/HA based biomaterial increased the peak extraction force of the lag-screw by 4 times compared with un-augmented lag-screws and the results were at par with PMMA. The X-ray images from the patient series showed that it was possible to inject the CaS/HA material at the bone-implant interface without applying additional pressure and the CaS/HA material spreading was observed at the interface of the lag-screw threads and the bone. Finally, the spreading of the CaS/HA material was also verified on donated femoral heads and micro-CT imaging indicated that the entire length of the lag-screw threads was covered with the CaS/HA biomaterial. In conclusion, we present a novel method for augmenting a lag-screw in TFs, which could potentially reduce the risk of fracture fixation failure and reoperation in fragile osteoporotic patients.
March 2022
Efficient systemic pharmacological treatment of solid tumors is hampered by inadequate tumor concentration of cytostatics necessitating development of smart local drug delivery systems. To overcome this, we demonstrate that doxorubicin (DOX), a cornerstone drug used for osteosarcoma treatment, shows reversible accretion to hydroxyapatite (HA) of both nano (nHA) and micro (mHA) size. nHA particles functionalized with DOX get engulfed in the lysosome of osteosarcoma cells where the acidic microenvironment causes a disruption of the binding between DOX and HA. The released DOX then accumulates in the mitochondria causing cell starvation, reduced migration and apoptosis. The HA+DOX delivery system was also tested in-vivo on osteosarcoma bearing mice. Locally delivered DOX via the HA particles had a stronger tumor eradication effect compared to the controls as seen by PET-CT and immunohistochemical staining of proliferation and apoptosis markers. These results indicate that in addition to systemic chemotherapy, an adjuvant nHA could be used as a carrier for intracellular delivery of DOX for prevention of tumor recurrence after surgical resection in an osteosarcoma. Furthermore, we demonstrate that nHA particles are pivotal in this approach but a combination of nHA with mHA could increase the safety associated with particulate nanomaterials while maintaining similar therapeutic potential.
December 2021
This research aims to investigate nonionic hyperbranched polyesters (HBPs) derived from indole and lignin resources as new nontoxic antimicrobial coatings. Three nonionic HBPs with zero to two methoxy ether substituents on each benzene ring in the polymer backbones were synthesized by melt-polycondensation of three corresponding AB2 monomers. The molecular structures and thermal properties of the obtained HBPs were characterized by gel permeation chromatography, nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, thermogravimetric analysis, and differential scanning calorimetry analyses. These HBPs were conveniently spin-coated on a silicon substrate, which exhibited significant antibacterial effect against Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and Gram-positive bacteria (Staphylococcus aureus and Enterococcus faecalis). The presence of methoxy substituents enhanced the antimicrobial effect, and the resulting polymers showed negligible leakage in water. Finally, the polymers with the methoxy functionality exhibited excellent biocompatibility according to the results of hemolysis and MTT assay, which may facilitate their biomedical applications
November 2021
A combined fracture and mortality risk index useful for treatment stratification in hip fragility fractures
Joint Diseases and Related Surgery
In this study, we aimed to assess the stratification ability of the Fracture and Mortality Risk Evaluation (FAME) index for reoperation, new fragility fracture, and mortality during one-year follow-up.
November 2021
September 2021
July 2021
May 2021
Dual modality neutron and x-ray tomography for enhanced image analysis of the bone-metal interface
Physics in Medicine & Biology
The bone tissue formed at the contact interface with metallic implants, particularly its 3D microstructure, plays a pivotal role for the structural integrity of implant fixation. X-ray tomography is the classical imaging technique used for accessing microstructural information from bone tissue. However, neutron tomography has shown promise for visualising the immediate bone-metal implant interface, something which is highly challenging with x-rays due to large differences in attenuation between metal and biological tissue causing image artefacts. To highlight and explore the complementary nature of neutron and x-ray tomography, proximal rat tibiae with titanium-based implants were imaged with both modalities. The two techniques were compared in terms of visualisation of different material phases and by comparing the properties of the individual images, such as the contrast-to-noise ratio. After superimposing the images using a dedicated image registration algorithm, the complementarity was further investigated via analysis of the dual modality histogram, joining the neutron and x-ray data. From these joint histograms, peaks with well-defined grey value intervals corresponding to the different material phases observed in the specimens were identified and compared. The results highlight differences in how neutrons and x-rays interact with biological tissues and metallic implants, as well as the benefits of combining both modalities. Future refinement of the joint histogram analysis could improve the segmentation of structures and tissues, and yield novel information about specimen-specific properties such as moisture content
May 2021
Augmenting a Dynamic Hip Screw with a Calcium Sulfate/Hydroxyapatite Biomaterial
Medical Engineering and Physics
Internal fixation failure in hip fractures can lead to reoperation. Calcium sulfate/hydroxyapatite (CaS/HA) is a biomaterial that can be used for augmenting fracture fixation. We aimed to determine whether an injection of 2 ml CaS/HA increases the fixation of a dynamic hip screw inserted in synthetic and human trabecular bone. The study consists of two parts: 1) synthetic bone blocks (n = 74), with three subgroups: empty (cannulated screw, no injection), cannulated, and fenestrated; and 2) osteoporotic human femoral heads (n = 29), with the same subgroups. The heads were imaged using µCT. Bone volume fraction, insertion angle, and head diameter were measured. Pullout tests were performed and peak force, stiffness, and work were measured. The fenestrated group showed increases in pullout strength compared to no injection in the synthetic blocks. The cannulated group showed a higher pullout strength in low-density blocks. In the femoral heads, the variation was larger and there were no significant differences between groups. The bone volume fraction correlated with the peak force and work, and the insertion angle correlated with the stiffness. CaS/HA can improve the fixation of a dynamic hip screw. For clinical use, spreading of the material around the threads of the screw must be ensured.
April 2021
Exosome-Functionalized Ceramic Bone Substitute Promotes Critical-Sized Bone Defect Repair in Rats
American Chemical Society
Ceramic biomaterials are promising alternatives to bone autografts. However, limited bioactivity affects their performance. Therefore, bioactive molecules and cells are often added to enhance their performance. Exosomes have emerged as cell-secreted vesicles, delivering proteins, lipids, and nucleic acids in a paracrine/endocrine fashion. We studied two complementary aspects required for exosome activity/therapy using purified exosomes: first, the intracellular uptake of labeled exosomes and second, the influence of delivered exosomes on cell behavior. Origin-specific differences in the characteristics of purified exosomes, quantification of time-dependent intracellular uptake of PKH-26-labeled exosomes by mesenchymal stem cells (MSCs) and preosteoblasts, and influence on cell behavior were evaluated. Furthermore, exosomes from osteoblasts and MSCs cultured under normal and osteogenic environments were isolated. There is little data available on the concentration and dose of exosomes required for bone regeneration. Therefore, equal amounts of quantified exosomes were implanted in vivo in rat tibia critical defects using a calcium sulfate–nano-hydroxyapatite nanocement (NC) bone filler as the carrier. Bone regeneration was quantified using micro-computed tomography and histology. Along with inducing early maturation and mineral deposition by primary preosteoblasts in vitro, exosome treatment also demonstrated a positive effect on bone mineralization in vivo. Our study concludes that providing a local delivery of exosomes loaded onto a slowly resorbing NC bone filler can provide a potential alternate to autografts as a bone substitute.
November 2020
Bone morphogenic proteins (BMPs) are the only true osteoinductive molecules. Despite being tremendously potent, their clinical use has been limited for reasons including supraphysiological doses, suboptimal delivery systems, and the pro-osteoclast effect of BMPs. Efforts to achieve spatially controlled bone formation using BMPs are being made. We demonstrate that a carrier consisting of a powder of calcium sulfate/hydroxyapatite (CaS/HA) mixed with bone active molecules provides an efficient drug delivery platform for critical femoral defect healing in rats. The bone-active molecules were composed of osteoinductive rhBMP-2 and the bisphosphonate, and zoledronic acid (ZA) was chosen to overcome BMP-2–induced bone resorption. It was demonstrated that delivery of rhBMP-2 was necessary for critical defect healing and restoration of mechanical properties, but codelivery of BMP-2 and ZA led to denser and stronger fracture calluses. Together, the CaS/HA biomaterial with rhBMP-2 and/or ZA can poten- tially be used as an off-the-shelf alternative to autograft bone.
October 2020
Bone mineral as a drug-seeking moiety and a waste dump
Bone and Joint Research
Bone is a dynamic tissue with a quarter of the trabecular and a fifth of the cortical bone being replaced continuously each year in a complex process that continues throughout an individual’s lifetime. Bone has an important role in homeostasis of minerals with non-stoichiometric hydroxyapatite bone mineral forming the inorganic phase of bone. Due to its crystal structure and chemistry, hydroxyapatite (HA) and related apatites have a remarkable ability to bind molecules. This review article describes the accretion of trace elements in bone mineral giving a historical perspective. Implanted HA particles of synthetic origin have proved to be an efficient recruiting moiety for systemically circulating drugs which can locally biomodulate the material and lead to a therapeutic effect. Bone mineral and apatite however also act as a waste dump for trace elements and drugs, which significantly affects the environment and human health.